13 research outputs found

    Upravljanje laganom robotskom rukom pomoću PC računala

    Get PDF
    U radu je nakon uvodnog poglavlja opisan tehnički sustav gdje je obrađen pojam laganog robota, prikazane su sve karakteristike robotske ruke KUKA LWR4+ pomoću koje je izveden ovaj diplomski rad, te je objašnjen UDP protokol i FRI programsko sučelje koje se temelji na njemu. Razvijen je kinematički model robota, određeni su DH parametri robotskog sustava te na temelju njih je izvedena direktna i inverzna kinematika robota. Razvijena je programska podrška i korisničko sučelje pomoću raspoložive C++ knjižnice kao bi se moglo vršiti izdavanje naredbi gibanja robota u kartezijskom koordinatnom sustavu te upravljanje po pojedinim zglobovima

    Projektiranje i regulacija balansirajućeg sustava pokretanog pneumatskim mišićima

    Get PDF
    U radu je uvodno prikazan tijek mehaničke izrade balansirajućeg sustava pokretanog pneumatskim mišićima. Nakon toga je ukratko objašnjen postupak izrade tiskane pločice metodom osvjetljivanja UV svijetlom. Svaki dio upravljačkog sustava kojeg čine pneumatski mišić, proporcionalni pneumatski razvodnik, te akvizicijska kartica su zasebno objašnjeni. Dosta pažnje je posvećeno izradi mjernog sustava budući da regulacija cijelog sustava ovisi o mjerenim parametrima. Izveden je matematički model sustava kuglice na gredi te je preko Euler-Lagrange-ovih jednadžbi izveden nelinearni model sustava koji je zatim lineariziran oko radne točke sustava. Cilj rada je prikazati mogućnost upotrebe pneumatskih mišića u svrhu regulacije sile i položaja, te tako dokazati da se pneumatski mišić, kao jeftiniji i na vanjske utjecaje otporniji aktuator od pneumatskog cilindra, treba uzeti u obzir, pri izboru aktuatora za navedenu svrhu

    Pneumatic muscle actuators within robotic and mechatronic systems

    Get PDF

    PC-based control of a lightweight robot arm

    No full text
    U radu je nakon uvodnog poglavlja opisan tehnički sustav gdje je obrađen pojam laganog robota, prikazane su sve karakteristike robotske ruke KUKA LWR4+ pomoću koje je izveden ovaj diplomski rad, te je objašnjen UDP protokol i FRI programsko sučelje koje se temelji na njemu. Razvijen je kinematički model robota, određeni su DH parametri robotskog sustava te na temelju njih je izvedena direktna i inverzna kinematika robota. Razvijena je programska podrška i korisničko sučelje pomoću raspoložive C++ knjižnice kao bi se moglo vršiti izdavanje naredbi gibanja robota u kartezijskom koordinatnom sustavu te upravljanje po pojedinim zglobovima.The system, which is used in a research is described in this paper. The Light-weight robot term is explained and a technical characteristic of the KUKA LWR4+ robot are shown. Fast Research Interface (FRI) which is based on UDP protocol is explained. DH parameters of the KUKA LWR4+ robot have been specified in order to robot kinematics, direct and inverse, can be implemented. The software with the user interface is developed so the robot motion can be controlled in Cartesian or joint frame space

    PC-based control of a lightweight robot arm

    No full text
    U radu je nakon uvodnog poglavlja opisan tehnički sustav gdje je obrađen pojam laganog robota, prikazane su sve karakteristike robotske ruke KUKA LWR4+ pomoću koje je izveden ovaj diplomski rad, te je objašnjen UDP protokol i FRI programsko sučelje koje se temelji na njemu. Razvijen je kinematički model robota, određeni su DH parametri robotskog sustava te na temelju njih je izvedena direktna i inverzna kinematika robota. Razvijena je programska podrška i korisničko sučelje pomoću raspoložive C++ knjižnice kao bi se moglo vršiti izdavanje naredbi gibanja robota u kartezijskom koordinatnom sustavu te upravljanje po pojedinim zglobovima.The system, which is used in a research is described in this paper. The Light-weight robot term is explained and a technical characteristic of the KUKA LWR4+ robot are shown. Fast Research Interface (FRI) which is based on UDP protocol is explained. DH parameters of the KUKA LWR4+ robot have been specified in order to robot kinematics, direct and inverse, can be implemented. The software with the user interface is developed so the robot motion can be controlled in Cartesian or joint frame space

    PC-based control of a lightweight robot arm

    No full text
    U radu je nakon uvodnog poglavlja opisan tehnički sustav gdje je obrađen pojam laganog robota, prikazane su sve karakteristike robotske ruke KUKA LWR4+ pomoću koje je izveden ovaj diplomski rad, te je objašnjen UDP protokol i FRI programsko sučelje koje se temelji na njemu. Razvijen je kinematički model robota, određeni su DH parametri robotskog sustava te na temelju njih je izvedena direktna i inverzna kinematika robota. Razvijena je programska podrška i korisničko sučelje pomoću raspoložive C++ knjižnice kao bi se moglo vršiti izdavanje naredbi gibanja robota u kartezijskom koordinatnom sustavu te upravljanje po pojedinim zglobovima.The system, which is used in a research is described in this paper. The Light-weight robot term is explained and a technical characteristic of the KUKA LWR4+ robot are shown. Fast Research Interface (FRI) which is based on UDP protocol is explained. DH parameters of the KUKA LWR4+ robot have been specified in order to robot kinematics, direct and inverse, can be implemented. The software with the user interface is developed so the robot motion can be controlled in Cartesian or joint frame space

    Autonomous docking for work class ROVs

    Get PDF
    This thesis describes research work in the domain of underwater robotics. It is aimed towards improving performance and achieving partial or full autonomy in the rapidly increasing underwater resident robotics field, with the emphasis on the development of a suite of technologies for autonomous Remotely operated vehicle (ROV) docking. Fundamentally resident ROVs operating from shore demand high bandwidth, zero latency communication link which is often unavailable, thus high levels of automation are needed to compensate. This is especially important for time-critical tasks such as ROV docking. In addition, the docking station provides a download/upload link, charging point, and overall mechanical protection for the resident vehicles. Therefore, the docking of the ROV at the end of a mission is one of the crucial ROV tasks and often dictates weather window extents. Research in the literature mainly focuses on the docking to a static docking station, and although docking to a docking station deployed to the seabed is part of the thesis, the emphasis is on the docking to a Tether Management System (TMS) garage suspended from the floating platform/ship. This is used as a ROV docking scenario close to that of docking to a dock on a floating production platform such as floating oil production platform, floating wind platform or floating offshore fish farm seacage. Typically it is difficult to compensate for all motion between the ROV and the suspendedTMS/dock due to underpowered thrust,large inertia,and high drag forces, presenting a significant challenge. If the docking of a conventional work-class ROV to a suspended TMS proves successful, it presents a significant contribution and accelerates the path towards collaborative and integrated ROV and Autonomous surface vehicle (ASV) systems. This advancement will drive further improvements in the autonomous transition of the existing intervention subsea vehicles across large areas, primarily associated with the offshore wind sector. The work presented in the thesis consists of three major parts. The first is the visual pose estimation system developed to provide accurate relative position measurements between the ROV and the docking station/TMS. The developed system is based on active light beacons asymmetrically arranged to form a unique marker, and a machine vision camera. The system is built around conventional, industry-standard subsea LED lights and camera and it has been successfully tested both in a lake and in the ocean. The additional algorithm has been developed to reduce the pose estimation errors due to the low camera sensitivity to angle measurements from longer distances. The system has been developed for standard work-class ROV systems found throughout the sector, deployed from suspended cage type TMS. The second is autonomous docking of an industry-standard work-class ROV to cage type TMS using a visual-based pose estimation approach. This included both, autonomous docking to static TMS deployed to the seabed, and docking to TMS suspended from the ship. Evaluation of the system has been demonstrated through completion of offshore trials in the North Atlantic Ocean during January 2019. The third is a suspended TMS heave motion prediction method for ROV docking, based on the Adaptive Neuro-Fuzzy Inference System (ANFIS). With large ROV inertia and drag forces acting against it, the ROV is not agile enough to match a cage type TMS heaving motion. Therefore the ROV docking manoeuvre has to start before the ROV and the TMS align. This also includes matching the ROV to the docking depth that covers top or the bottom half of the TMS heave range, where TMS vertical speed is low. The method includes on-site neural network training based on previous TMS depth measurements and the TMS depth prediction. In addition, this method could be used standalone as a ROV pilot aiding tool

    Neuro-Fuzzy dynamic position prediction for autonomous work-class ROV docking

    Get PDF
    This paper presents a docking station heave motion prediction method for dynamic remotely operated vehicle (ROV) docking, based on the Adaptive Neuro-Fuzzy Inference System (ANFIS). Due to the limited power onboard the subsea vehicle, high hydrodynamic drag forces, and inertia, work-class ROVs are often unable to match the heave motion of a docking station suspended from a surface vessel. Therefore, the docking relies entirely on the experience of the ROV pilot to estimate heave motion, and on human-in-the-loop ROV control. However, such an approach is not available for autonomous docking. To address this problem, an ANFIS-based method for prediction of a docking station heave motion is proposed and presented. The performance of the network was evaluated on real-world reference trajectories recorded during offshore trials in the North Atlantic Ocean during January 2019. The hardware used during the trials included a work-class ROV with a cage type TMS, deployed using an A-frame launch and recovery system

    Real-time underwater stereofusion

    Get PDF
    Many current and future applications of underwater robotics require real-time sensing and interpretation of the environment. As the vast majority of robots are equipped with cameras, computer vision is playing an increasingly important role it this field. This paper presents the implementation and experimental results of underwater StereoFusion, an algorithm for real-time 3D dense reconstruction and camera tracking. Unlike KinectFusion on which it is based, StereoFusion relies on a stereo camera as its main sensor. The algorithm uses the depth map obtained from the stereo camera to incrementally build a volumetric 3D model of the environment, while simultaneously using the model for camera tracking. It has been successfully tested both in a lake and in the ocean, using two different state-of-the-art underwater Remotely Operated Vehicles (ROVs). Ongoing work focuses on applying the same algorithm to acoustic sensors, and on the implementation of a vision based monocular system with the same capabilities
    corecore